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Magnesium deficiency is a frequently occurring limiting factor for crop production due to
low levels of exchangeable Mg (ex-Mg) in acidic soil, which negatively affects sustainability
of agriculture development. How Mg fertilization affects crop yield and subsequent
physiological outcomes in different crop species, as well as agronomic efficiencies of
Mg fertilizers, under varying soil conditions remain particular interesting questions to be
addressed. A meta-analysis was performed with 570 paired observations retrieved from
99 field research articles to compare effects of Mg fertilization on crop production and
corresponding agronomic efficiencies in different production systems under varying soil
conditions. The mean value of yield increase and agronomic efficiency derived from Mg
application was 8.5% and 34.4 kg kg’ respectively, when combining all yield
measurements together, regardless of the crop type, soil condition, and other factors.
Under severe Mg deficiency (ex-Mg < 60 mg kg™"), yield increased up to 9.4%, nearly two
folds of yield gain (4.9%) in the soil containing more than 120 mg kg™ ex-Mg. The effects of
Mg fertilization on yield was 11.3% when soil pH was lower than 6.5. The agronomic
efficiency of Mg fertilizers was negatively correlated with application levels of Mg, with 38.3
kg kg at lower MgO levels (0-50 kg ha™") and 32.6 kg kg™ at higher MgO levels (50-100
kg ha™). Clear interactions existed between soil ex-Mg, pH, and types and amount of Mg
fertilizers in terms of crop vyield increase. With Mg supplementation, Mg accumulation in
the leaf tissues increased by 34.3% on average; and concentrations of sugar in edible
organs were 5.5% higher compared to non-Mg supplemented treatments. Our analysis
corroborated that Mg fertilization enhances crop performance by improving yield or
resulting in favorable physiological outcomes, providing great potentials for integrated
Mg management for higher crop yield and quality.
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INTRODUCTION

Magnesium (Mg) is an essential element for crops, animals,
and humans, the deficiency of which affects photosynthesis
and carbohydrate partitioning in crops (Nejia et al.,
2016), reduces sustainability of agricultural production and
development, and causes long-term negative impacts on
human and animal health (Robert and Helen, 2004; Jeroen
et al., 2015). Unfortunately, obvious symptoms of Mg
deficiency frequently occur in crops, especially at their critical
developmental stage with rapid carbohydrate accumulation,
grown in acidic soils widely distributed across the world
(Cakmak et al., 1994; Nejia et al, 2016). Edible agricultural
products are the main source of Mg nutrition for humans and
animals. Therefore, maintaining Mg contents of agricultural
products within relatively sufficient range is very important for
animal and human health.

In an agricultural production system, the availability of Mg to
crops depends on various factors such as soil texture, cation
exchangeable capacity (Hariadi and Shabala, 2004), site specific
climatic and anthropogenic factors, agronomic management
practices, as well as crop species itself (Scheffer and
Schachtschabel, 2002; Mikkelsen, 2010). Crops absorb Mg
from the soil mainly through their roots. Adequate soil Mg is
a key to ensure robust crop growth and production. Absolute Mg
deficiency in the soil dramatically reduces Mg absorption by
crop roots, which is frequently a consequence of low Mg
contents in source rocks (Papenfufl and Schlichting, 1979), Mg
losses by mobilization and leaching in the soil (Schachtschabel,
1954), or Mg depletion due to intensive crop production (Pol
and Traore, 1993). Additionally, cationic competition, resulting
from long-term imbalanced soil fertilization, causes nutrient
heterogeneity in soils. A good soil Mg condition is the pre-
requisite to ensure Mg uptake by crop roots and enhance Mg
utilization efficiency.

Soil acidity is another important factor determining crop
productivity (Mohebbi and Mahler, 1989; Aggangan et al., 1996),
closely associated with deficiency of potassium, calcium,
magnesium, phosphorus, and zinc, while toxicity of aluminum
and manganese (Guo et al.,, 2004; Zhu et al., 2004; Binh et al,,
2018) antagonizes the availability of Mg (Wang et al., 2014). In
addition, the highly mobile nature of Mg>* ion makes it
susceptible to leaching from the root zone by heavy rainfall
(Schachtschabel, 1954; Grzebise, 2011; Gransee and Fiihrs, 2013)
especially in acidic soils, reducing nutrient utilization efficiencies
and crop yield.

In recent decades, more emphasis has been given to nitrogen,
phosphorus, and potassium fertilizers than Mg to obtain higher
crop yield (Cakmak and Yazici, 2010). Soils undergoing intensive
crop forage and harvest are not being replenished with Mg
fertilizers, resulting in depletion of indigenous Mg from the soil
and large-scale Mg deficiency. Nowadays, Mg deficiency has

Abbreviations: N, nitrogen; P, phosphorus; K, potassium; Ca, calcium; Mg,
magnesium; AE-Mg, agronomic efficiency of Mg fertilizers; ex-Mg,
exchangeable magnesium.

become a widespread problem severely reducing photosynthetic
rates of crops especially grown in acidic soils (Fischer, 1997; Sun
and Payn, 1999; Ridolfi and Garrec, 2000; Graeff et al., 2001;
Hermans et al., 2004). Mg deficiency symptoms typically appear
on older leaves (Bergmann, 1992). Chlorosis is a most obvious
response of crops to Mg deficiency that foretells considerable yield
reduction as a result of decreases in sugar transport from the
source to sink organs and biomass accumulation in the root and
reproductive tissues (Hermans et al., 2004; Cakmak and Yazici,
2010; Gransee and Fiihrs, 2013). From a broader point of view, Mg
fertilization improves tomato yield (7.7-17.9 t ha") in South India
(Kashinath et al.,, 2013), grain yield in barley (by 8.6%) in Iran
(Mahdi et al., 2012), and hazel nut highest yield increase of 51%
and total oil content increase of 4.8% in Turkey (Nedim and Daml,
2015), suggesting that Mg fertilization is an important measure to
boost crop production. There is also substantial literature available
on the importance of Mg for agricultural productivity, Mg
deficiency in soils and crops, and Mg involvement in plant
structure and physiological functions (Cakmak et al., 1994;
Cakmak and Kirkby, 2008; Cakmak, 2013; Ceylan et al., 2016).
However, it is imperative to better understand responses of crop
yield to Mg-fertilization under different soil, cropping, and
fertilization conditions in large-scale field experiments.

Until now, there has been no attempt made to systematically
re-analyze effects of Mg fertilization on crop yield and agronomic
efficiencies by summarizing the past experiments worldwide.
Factors such as soil available Mg, soil pH, and rates and types
of Mg fertilizers precondition yield responses to Mg application.
In this study, a meta-analysis was conducted to (1) evaluate
overall effects of Mg fertilizers on crop yield and corresponding
agronomic efficiencies; (2) understand vyield effects of Mg
fertilization under different cropping and fertilization
conditions; and (3) to estimate how exchangeable Mg and pH
levels in the soil affects outcomes of Mg fertilization.

MATERIALS AND METHODS

Search Strategy and Data Extraction

To analyze the effect of Mg fertilizers on crop production in the
field, a comprehensive literature search was performed using
“Magnesium (Mg) fertiliz*,” “Magnesium (Mg) fertilis*” in the
article title and “crop yield*” as key terms on Web of Science
(http://apps.webofknowledge.com/) and China National
Knowledge Infrastructure (http://www.cnki.net/) electronic
databases before November 2019. Data were extracted either
directly from tables or indirectly from conversion of original
figures in reported studies including crop yield, Mg and sugar
concentrations responsive to Mg fertilization around the world
(Figure 1A; most studies from China, much less from the other
countries, and no reports found from Brazil). There were very
few physiological and quality data available; hence,
corresponding evaluation was not included in this study.
Effects of Mg fertilization on yield followed the standard
normal distribution (Figure 1B). The studies were selected
according to the following four criteria: (1) studies containing
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corresponded to data frequency 25%, 50%, and 75% (B).

Frequency

FIGURE 1 | The Map distribution of experimental sites (A) and frequency distribution of data indicating effects of Mg fertilization on crop yield (B) for our meta-
analysis. The blue spots indicated local experimental sites of Mg fertilizers in the field (A). The three red lines of Q1 (left), Median (middle), and Q3 (right)

comparisons of magnesium fertilization and without magnesium
fertilization (control), (2) representing field experiments,
excluding pot experiment in the greenhouse, (3) with Mg
fertilization in the soil, excluding foliar Mg application, (4) the
study reporting types of crops, yield, the mean, and the number
of paired observations (Supplementary Figure S1).

Data Sources

A total of 99 papers (see study list in Supplementary Data Sheet
S1) with 570 pairwise comparisons qualified for our meta-
analysis (396 from China and 174 from other countries). The
field trials were reported in ten countries (Bangladesh, Canada,
China, Chile, Iran, New Zealand, Nigeria, Poland, Turkey, and
United Kingdom) (Figure 1A).

Effect Sizes and Their Modeling

Effects of Mg fertilization on crop yield were evaluated against
corresponding control without Mg fertilization by the
following equation:

Xt
InR = ln(X—c)

where [nR represented the natural log of the response ratio
(the effect size), Xt represented the crop yield under Mg
fertilization, and Xc represented the crop yield without Mg
fertilization (Hedges et al., 1999; Verena et al, 2012). Given
that more than 50% of case studies did not provide a measure
of variance, case studies were weighted using numbers of study
and experiment by mixed effects models in R. To interpret
clearly, the effect on yield was expressed as the percentage
change, which was calculated by (R-1) x 100%. A positive
percentage change indicated an increase, whereas negative
values indicated a decrease due to Mg fertilization. Mean
percentage change was considered to be significantly different

from zero if the 95% CI did not overlap with zero (Hedges
et al., 1999).

Agronomic Efficiency of Mg fertilizers (AE-Mg) was
calculated by the following equation:

AE — Mg = (Xt — X) /Fpgg0

where Fjo represented amount (kg MgO ha™') of Mg
fertilizers applied.

Statistical analysis was performed using mixed effects
models in R (version 3.5.1) as follows: (1) the fixed effect,
(2) the fixed effect and a random study effect, (3) the fixed
effect and random effects of study and experiment nested in the
study, and (4) the fixed effect and a unique experiment random
effect. Appropriate random effects were identified by AIC
(Akaike Information Criterion) and ANOVA analyses (R Stats
Packages), with significant difference at P < 0.05 and P < 0.01
(SPSS 20.0).

Dataset Overview

The resulting dataset contained 570 case studies, covering more
than 30 crops across ten countries (Supplementary Data Sheet
S1). According to crop characteristics and their responses to Mg
fertilization, related crops were analyzed in nine groups: cereals
(rice, maize, wheat, barley), fruits (apple, banana, pineapple,
orange, pomelo, litchi, watermelon, sugar cane), vegetables
(cabbage, lettuce, pepper, tomato, cucumber), tubers (potato,
sweet potato, cassava, carrot), oil crops (soybean, peanut, canola,
sunflower), grasses, tobacco, tea, and other crops (sugar beet,
onion, milk thistle, blueberry).

To better interpret the results, soils were empirically divided
into acidic (<6.5), neutral (6.5-7.5), and alkaline (>7.5) or Mg
deficient (<60 mg kg'), moderate (60—120 mg kg'), and
relatively sufficient (>120 mg kg') types, respectively,
according to pH and exchangeable Mg levels in the soil.
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Mg fertilizers were classified into two types: (1) slowly
released (Mg-S) fertilizers including Mg oxide, Mg hydroxide,
dolomite, Mg carbonate, and calcium-Mg phosphate, and (2)
rapidly released (Mg-R) fertilizers including Mg sulfate, Mg
chloride, and potassium Mg sulfate. Fertilization rates varied in
a range of <50, 50-100, and >100 kg MgO ha™'.

Total (570) { o
Fruits 63) { <001 e

Grasses (28) - ——e—
Tobacco (76) { P

Tubers (71) A —e—

Vegetables (50) - —e—
Cereals (168) { —e—i
Oilcrops (53) 1 @ +——e——
Tea (12) —e—H
Others (49) | +——e—|

-5 0 5 10 15 20
Effects of Mg fertilization on yield (%)

FIGURE 2 | Relative effects of Mg fertilization on crop yield. The data points
were means + 95% ClI (confidence interval), and the number of experimental
observations were indicated in parentheses. P, indicated the significant
differences between crops.

RESULTS

Magnesium (Mg) Fertilization Enhanced
Yield of Most Crops

Magnesium fertilizers generally promoted yield for most
crops (Supplementary Figure S2) and yield increases varied
depending on crop species, soil conditions, Mg fertilization rates,
and other factors. The average yield increase in crop production
was 8.5% according to our meta-analysis (Figure 2). Magnesium
fertilization significantly enhanced production of fruits (12.5%),
grasses (10.6%), tobacco (9.8%), tubers (9.4%), vegetables (8.9%),
cereals (8.2%), oil crops (8.2%), and tea (6.9%), although non-
significantly for the other crops (1.5%), compared to the non-Mg
supplemented treatment at P < 0.05 (Figure 2). Moreover,
average yield increases of fruit, grass, tobacco, tuber, and
vegetable crops were higher than the overall average, while
those of cereal, oil, tea, and other crops were lower (Figure 2).
Crop responses to Mg differed due to soil and other related
conditions. Meta-analysis revealed that Mg concentrations in
leaves and sugar concentrations in crops tissues (tubers and
beans) increased by 34.3% (Figure 3A) and 5.5% (Figure 3B) at
P < 0.01, respectively, upon Mg fertilization.

Agronomic Efficiencies of Mg Fertilizers
Were Positively Correlated to Yield
Increases of Most Crops

The agronomic efficiency (AE) is an important parameter
indicating relative fertilization efficiency in agricultural
production. AE of Mg fertilizers was defined as the yield
increase per unit of Mg fertilizers applied. On average, AE-Mg
was 34.4 kg kg”' when 541 cases (amount of Mg fertilization was
not reported in 29 cases) were combined in this study (Figure 4).
Similar to the effect of crop species on yield increases, the
agronomic efficiencies of Mg fertilizers (AE-Mg) was also
affected by crop species, though in a manner inconsistent with

6
A (n=106)

< 5 *%*
(o))
g
= [ ]
g 5] 1
£ T
5
5 2
1
5] + .
o
[*)]
S 0

-1 T T

Sugar concentration in edible tissues (mg g‘1)

-Mg +Mg

250
B *k (n=22)
200 A
o o
150 A
100 4
&
50 -
0 T T
-Mg +Mg

FIGURE 3 | Mg in leaves (A) and sugar in edible tissues (B) concentrations with Mg (+Mg) and without Mg (-Mg) supplementation. Solid black and dashed red lines
indicated the median and mean, respectively. The box boundaries indicated the 75% and 25% quartiles; error bars indicated the 90th and 10th percentiles; and the
black dots indicated the 95th and 5th percentiles. **, indicated highly significant differences between treatments (P < 0.01).
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Total (541) ~ e
Fruits (52) - a2
Grasses (28) I—Q—dl
Tobacco (76) {1  +—e—%H
Tubers (67) - —e—2
Vegetables (49) —e—2
Cereals (165) - —eY
Oil crops (46) I—Q—dl
Tea(12) { ——o—9
Others (46) 1  —e—"
-40 (IJ 4I0 8I0 120
Agronomic efficiency of Mg fertilizers (kg kg'1)
FIGURE 4 | The agronomic efficiency of Mg fertilizers (AE-Mg) in different
crops. The data points were means + 95% ClI (confidence interval), and the
number of experimental observations were indicated in parentheses. Small
letters indicated the significant differences between different crops (P < 0.05).

the former effect. The AE-Mg of vegetable (73.7 kg kg') was
significantly higher than tuber (58.8 kg kg™), fruit (55.0 kg kg™),
and cereal (34.7 kg kg'l) crops at P < 0.05 (Figure 4). However,
there was no significant difference in the AE-Mg between tea,
grasses, oil, tobacco, and other crop experiments due to large
variations (Figure 4).

AE-Mg calculation was based on fresh weights of harvested
parts of different crops (except dry matter yield for grasses).
Higher water content in the harvested organ tended to increase
AE-Mg. Responses of crops to Mg (Figure 5) and the amount of
Mg fertilizers applied (Figure 6) also affected the AE-Mg.
Among four types of crops (vegetables, tubers, fruits, and

cereals) responsive to Mg fertilization (Figure 4), yield
increases in vegetables (P < 0.05) and fruits (P < 0.01) had
significant correlation with Mg concentrations (Figure 5B).

Generally, the AE-Mg responded to Mg application when
lower than 100 kg MgO ha™! was applied (Figure 6A). Although
there was no data for sugarcane (in the fruits group) and sugar
beet (in the other crops group) under Mg fertilization lower than
50 kg MgO ha™', the AE-Mg in vegetable (90.8 kg kg™"), tuber
(68.0 kg kg™"), and cereal (35.3 kg kg'') crops was responsive to
Mg fertilization lower than 50 kg MgO ha™" (Figures 6B, C, E);
the AE-Mg in fruit (62.0 kg kg™') (Figure 6D) and other crops
(9.6 kgkg') (Figure 6F) was responsive even in the range of 50—
100 kg MgO ha'. Notably, fruit crops responded to Mg
application higher than 100 kg MgO ha™ (Figure 6E). The
difference was probably due to differential responses of crops
to Mg, which conferred yield variations in relation to
concentration changes of Mg in leaves (Figure 5). Importantly,
there was a significant positive liner correlation between the crop
yield and Mg concentration in leaves (P < 0.01, Figure 5A). With
regard to different crop categories, the linear correlation was
significant for vegetables (P < 0.05), fruits, and grasses (P < 0.01)
(Figures 5B, C).

Soil Conditions and Fertilizer Types
Affected Fertilization Effects

Crop roots explore heterogeneously available mineral nutrients
in the soil for absorption to sustain plant growth and
development (Hodge, 2004; Nibau et al., 2008). Soil conditions,
e.g. concentrations of exchangeable Mg and soil pH levels, have a
direct effect on Mg availability to crops thereby affecting crop
yield in the long run (Foy and Barber, 1958; Fox and Piekielek,
1984; Clarka et al., 1997). Our meta-analysis suggested obvious
stimulatory effects of Mg fertilization on crop yield in Mg-
deficient acidic soils (Figure 7). Crop yield increased by 9.4%,
9.4%, and 4.9% due to Mg fertilization respectively under Mg
deficient (exchangeable Mg <60 mg kg™'), moderate (60-120 mg
kg!), and relatively sufficient (> 120 mg kg') conditions.
Similarly, Mg improved crop production by 11.3%, 6.3%, and
3.9% respectively under acid (pH <6.5), neutral (pH 6.5-7.5),
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FIGURE 5 | The relationship between effects of Mg fertilization on yield and variations in Mg concentrations in all crops (A), vegetables, tubers, fruits, cereals (B),
grasses and tobacco (C). Individual crop was represented by colored circle, and the response relation is fitted by a straight line of the same color line. P-value,

indicated the significance of the results.
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MgO, magnesium oxide.
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FIGURE 6 | Agronomic efficiency of Mg fertilizers (AE-Mg) in all crops (A), vegetables (B), tubers (C), fruits (D), cereals (E), and other crops (tobacco, tea, grasses,
oil, and other crops) (F). The data points were means + 95% CI (confidence interval), and the number of experimental observations were indicated in parentheses.
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FIGURE 7 | Effects of Mg fertilizer on crop yield under different soil conditions
(exchangeable-Mg concentrations, soil pH, rates of MgO application, and types
of Mg fertilizers). The data points were means + 95% CI (confidence interval),
and the number of experimental observations were indicated in parentheses.
Soil ex-Mg, soil exchangeable magnesium; MgO, magnesium oxide; Mg-R,
rapidly released Mg fertilizers; Mg-S, slowly released Mg fertilizers.

and alkaline (pH >7.5) soil conditions (Figure 7). Yield increases
were positively correlated with the amount of Mg fertilizers
especially at application levels higher than 100 kg MgO ha™
(9.0% yield-increment, Figure 7). Nevertheless, two different
types of Mg fertilizers Mg-R (8.3%) and Mg-S (9.0%) showed no
significant difference in yield improvement (Figure 7).

Interaction Effects of Ex-Mg and
Fertilization Rates, Ex-Mg and pH, and pH
and Fertilizer Types
Given large variations in fertilization regimes and soil conditions
in field experiments, it's necessary to evaluate interaction effects
of different influential factors on stimulatory effects of Mg
fertilization on yield. The ex-Mg level was the significant factor
compared with application rates of Mg fertilizers (P < 0.05, Table
S1). With exchangeable-Mg concentrations in the soil increasing,
crop yield responded moderately or slightly to Mg fertilization.
Notably, Mg application higher than 100 kg MgO ha in Mg
deficient soils gave rise to the largest yield gain (12.5%) (Figure
8A). Adjustment of MgO rates caused no significant difference in
soils with moderate or relatively sufficient ex-Mg (Figure 8A).
Indeed, the effect of Mg-fertilizers on crop production was
combinatorically determined by pH levels and ex-Mg status of
soils (P = 0.803, Supplementary Table S2), with the ex-Mg
concentration as a main influential factor (P = 0.05,
Supplementary Table S2). Average yield increases derived
from Mg-fertilization under Mg deficiency were greater than
those under moderate or relatively sufficient Mg conditions
regardless of variations in soil pH (Figure 8). However, the
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FIGURE 8 | Interaction effects of two factors on yield increases: soil exchangeable Mg and rates of Mg fertilizers (A), soil exchangeable-Mg and pH (B), soil pH and
Mg fertilizer types (C). * and **, indicated significant differences at P < 0.05 and P < 0.01, respectively. MgO, magnesium oxide; Mg-R, rapidly released Mg fertilizers;

interaction effect of soil pH and Mg-fertilizer types was
significant (P < 0.05, Supplementary Table S3). The Mg-S
type significantly improved crop yield (20.9%) compared to the
Mg-R type (10.8%) in acidic soils (P < 0.01, Figure 8C). Mg-S
type also has a certain effect on improving soil acidity, which
indirectly improves the utilization efficiency; and Mg-R
performed better than Mg-S in neutral and alkaline soils
(Figure 8C).

DISCUSSION

Magnesium Application Increases Crop
Yield

Magnesium plays essential roles in ensuring crop productivity
(Senbayram et al., 2015); unfortunately, Mg concentration in
wheat, fruits, and vegetables has declined over the past 50 years
(Andrea, 2013). Latent and acute Mg deficiencies are common
phenomena in crop production (Rémheld and Kirkby, 2007).
Magnesium fertilization improves crop yield in the field (Mahdi
et al.,, 2012; Kashinath et al., 2013; Nedim and Daml, 2015).
Given large variations in crop species, fertilization regimes, and
soil and climatic conditions in field experiments, it's necessary to
systemically evaluate or quantify the overall effects of Mg
fertilization on crop vyield, corresponding agronomic
efficiencies, and how pH and exchangeable Mg levels influence
effects of Mg fertilization. Here, we selected 396 sets of
observations from China and 174 outside of China to analyze
how soil application of Mg fertilizers affect crop production in
the field.

Our meta-analysis showed higher yield in fruit, grass,
tobacco, tuber, vegetable, cereal, oil crop, tea, and other crops
production with an overall 8.5% increase (Figure 2) when
reasonable amount of Mg (i.e., 94.1, 46.9, 54.1, 58.3, 43.5, 27.8,
47.2, 34.1, and 76.8 kg MgO ha’', respectively) was applied.
Under Mg deficiency, Mg fertilization leads to large yield
increases; when not deficient, applied Mg meets high demand
of crops during their rapid growth period. Alternatively, high

concentrations of ions such as K*, Ca®*, and NH," likely
antagonize Mg>" uptake (Mulder, 1956; Seggewiss and Jungk,
1988; Wilkinson et al., 1990; Marschner, 2012); therefore, Mg
fertilization upscales the Mg>" proportion and weakens other
cationic antagonism in the soil solution. Magnesium deficiency
hampers nutrient uptake and reduces the leaf growth rate,
affecting the assimilate supply to growing roots and their
capacity to acquire nutrients and ultimately decreases the yield
(Cakmak and Kirkby, 2008).

Magnesium is key component of several biological processes
(CO, fixation in photosynthesis, photophosphorylation, protein
and chlorophyll synthesis, phloem loading, and translocation of
assimilates) in leaves (Cakmak and Yazici, 2010). The
photosynthetic assimilates from leaves are transported to the
sink organs (such as roots, shoot tips, and seeds), and stored as
starch or converted to hexoses (Cakmak et al., 1994; Hermans
et al,, 2005; Lemoine et al., 2013) to increase crop yield under
sufficient Mg status (Brohi et al., 2000; Laing et al., 2000). Sucrose
transport from source to sink tissues occurs through phloem by
invertase and sucrose synthase enzymes (Sturm and Tang, 1999;
Winter and Huber, 2000; Welham et al., 2009). Hence,
appropriate Mg concentration in leaves is essential to ensure
activities of enzymes involved in source-to-sink transport of Mg
and sugars, which can be achieved by planting proper species as
well as managing Mg fertilizer rates (White and Broadley, 2009).

Mg”" and closely related sugar production in leaves are of
utmost importance for biomass accumulation and grain
development (Koch, 1996; Orlovius and McHoul, 2015). Mg**
also promotes assimilate partitioning and translocation to source
tissues (Cakmak and Kirkby, 2008; Cakmak, 2013). Mg-
deficiency reduces grain weight and lowers grain quality in
wheat (Ceylan et al., 2016). We found that sugar
concentrations in crops increased when Mg was applied
compared to those without Mg application (Figure 3B).
Enhanced sugar accumulation due to Mg fertilization is
beneficial for crop production, regardless of plant species
(Strebel and Duynisveld, 1989; Marschner, 2012; Orlovius and
McHoul, 2015).
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Agronomic Efficiencies of Mg Fertilizers
Varies Depending on Crop Species

Mg*" plays a critical role in regulating photosynthesis (Sun and
Payn, 1999); Mg deficiency severely down-regulates
photosynthesis rates, photo assimilates transport to sinks and
crop yield (Ngjia et al,, 2016). Magnesium application promoted
Mg concentration in leaves (Figure 3A) and crop yield
(Figure 2). The increased Mg concentration in leaves favored
yield increases in all crops (Figure 5A) and significant responses
were observed in fruits (P < 0.01), vegetables (P < 0.05)
(Figure 5B), and grasses (P < 0.01, Figure 5C). However, the
agronomic efficiencies of Mg fertilizers (AE-Mg) showed a
different pattern due to variations in uptake or utilization of
Mg across crop species (Figure 4). We analyzed 541 dataset and
identified the AE-Mg as 34.4 kg kg' on average (Figure 4).
Vegetables were always most responsive to Mg application, and
cereals were least responsive (Figure 4). Even for cereals, the AE-
Mg was 34.7 kg kg'' (Figure 4), dramatically higher than that of
nitrogen (8.0-10.4 kg kg™'), phosphorus (7.3-9.0 kg kg'!), and
potassium (5.3-6.3 kg kg’l) (Zhang et al., 2008). Plants generally
have similar concentrations of Mg and P (Marschner, 2012);
However, in contrast to long-term NPK fertilization, Mg removal
from the soil by crop harvest has not been supplemented and Mg
is more easily leached (Schachtschabel, 1954; Grzebise, 2011;
Gransee and Fiihrs, 2013), resulting in larger yield effects and
higher AE-Mg upon Mg application.

Soil Conditions Primarily Determine Yield
Effects of Mg Fertilization

Soil pH directly affects magnesium release from clay minerals
and Mg uptake by plants (Schubert et al., 1990). Exchangeable
Mg at pH <6.0 becomes non-exchangeable when soil pH
becomes higher than 6.5 (Chan et al., 1979; Hailes et al., 1997).
Mg is subjected to leaching in acidic soils, and H*, AI’*, and Mn?
" in rhizosphere may interfere with Mg uptake, thus hampering
crop yield (Metson, 1974; Mayland and Wilkinson, 1989). Mg
fertilization not only increases bioavailability of Mg>*, but also
mitigates AI’* and Mn** toxicity (Bot et al., 1990; Goss and
Carvalho, 1992; Bose et al., 2011; Marschner, 2012). Therefore,
dramatic yield increases were observed when exchangeable Mg
was lower than 60 mg kg' or pH was below 6.5, with less extent
of yield effects under other conditions (Figure 7). Crops
cultivated on Mg deficient soils show positive responses to the
applied Mg fertilizers depending on the rate and timing of
application (White and Broadley, 2009; Grzebisz, 2013). Thus,
the application of Mg fertilizer in the acidic and Mg deficient soil
is very important for crop nutrient management.

The yield effect was the largest in the magnesium deficient soil
irrespective of MgO rates (Figure 8A) and soil pH (Figure 8B).
Although exchangeable-Mg levels were the primary factors
determining yield increases (Supplementary Tables S1 and
§2), there were clear interactions between soil pH and fertilizer
types (Supplementary Table S3). Mg fertilizers are generally

classified into rapidly released (Mg-R) and slowly released (Mg-
S) types with distinct particle size and water solubility (Mayland
and Wilkinson, 1989; Hardter et al.,, 2004; Loganathan et al,
2005). Mg-S releases slowly and improved yield more efficiently
as compared to Mg-R (Figure 8C). Mg-S is also efficiently
absorbed by crops and neutralizes soil acids. Both Mg-R and
Mg-S improved crop yield with no significant difference between
two types of Mg fertilizers (Figure 8).

CONCLUSIONS

Magnesium has similar concentrations to phosphorus in plant
tissues. However, Mg is easily leached out in acidic soils and
competition of excessive cations makes Mg less available to plant
roots. Unfortunately, Mg deficiency is not well aware by farmers.
Thus, Mg limitation is becoming an increasingly severe
limitation factor in crop production. Our analysis suggested
that Mg application improved crop yield by 8.5% under
various field conditions across the world, along with elevation
of Mg and sugar concentrations in plant tissues. The yield
increase was 10.6% under severe Mg deficiency and 10.8%
when soil pH was lower than 6.5.

The agronomic efficiency of magnesium fertilizers was 34.4 kg
kg ' and increased up to 38.3 kg kg™ at lower MgO levels (0-50
kg ha™'), which is dramatically higher than that of nitrogen,
phosphorus, and potassium. Our findings indicate that it is more
efficient in terms of yield improvement by applying Mg fertilizers
compared to application of other macronutrients, opening up a
novel path towards high nutrient efficiency, balanced fertilization
for high crop yield and quality, as well as sustainable
development of agriculture.
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Supplementary Figure S1
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Figure S1 | Screening method of Mg dataset by preferred reporting items for systematic reviews and Meta-analysis (PRISMA).
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Supplementary Figure S2
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Figure S2 | Effects of Mg fertilization on yield (crop groups based on figure 2) of fruits (A), vegetables and tubers (B), cereals and oil crops (C)
tobacco, tea, grasses and other crops (D). The data points were means + 95% CI (confidence interval), and the number of experimental observations
were indicated in parentheses.
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Supplementary Table S1

Table S1 Analysis of interaction effects between soil exchangeable Mg and MgO rates for yield

improvement
Source of Variation SS df MS F P
S1 (Soil ex-Mg) 1650.60 2 825.30 6.246  0.002**
S2 (MgO rates) 2.25 2 1.12 0.009 0.992
Interaction (S1*Sy) 574.67 4 143.67 1.087 0.362
Error 58142.76 440 132.14
Total 89390.16 449

Soil ex-Mg, soil exchangeable magnesium concentration; MgO rate, the amount of MgO in

applied magnesium fertilizer. **, significance at P < 0.01



Supplementary Table S2

Table S2 Analysis of interaction effects between soil pH and soil ex-Mg for yield improvement

Source of Variation SS df MS F P
Sz (Soil ex-Mg) 844.89 2 422.45 2.915 0.050*
S1(Soil pH) 444.85 2 222.43 1.535 0.217
Interaction (S1*S») 144.13 3 48.04 0.332 0.803
Error 54489.91 376 144.92
Total 83838.56 384

Soil ex-Mg: soil exchangeable Mg concentration. *, significance at P < 0.05



Supplementary Table S3

Table S3 Analysis of interaction effects between soil pH and Mg fertilizer types for yield

improvement
Source of Variation SS df MS F P
S1 (Soil pH) 5783.01 2 2891.51 13.163  0.000**
Sz (Mg types) 47.07 1 47.07 0.214 0.644
Interaction (S1*S5) 1777.16 2 888.58 4.045 0.018*
Error 90720.07 413 219.66
Total 134663.44 419

*and **, significance at P < 0.05 and P < 0.01, respectively.
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